Time (90 minutes)

Choose the best answer:

1. The y-compon	ent of vector (\vec{a}) c	an be found using	the relation (who	ere θ is the	angle between the
vector and the po	ositive <i>x</i> -axes):				
a) $a_y = a \cdot \sin \theta$	b)	$a_y = a \cdot \cos \theta$	c) $a_y =$	a . tan θ	
2. The SI unit of	frictional force is:				
a) Dimensionless	b)	kg.m/s ²	c) J		d) Kelvin
3. The vector pro	duct of two vectors	\vec{C} and \vec{D} is written	as:		
a) $\vec{C} \times \vec{D} = C.D.$	$\sin \theta$ b) $\vec{C} \times$	$\vec{D} = C.D.\cos\theta$	c) $\vec{C} \cdot \vec{D} = C \cdot \vec{D}$	D. sin θ	d) $\vec{C} \cdot \vec{D} = C \cdot D \cdot \cos \theta$
4. The resultant b	etween two vectors	can be found by p	lacing the vecto	rs:	
a) tip to tip	b) tip to tail	c) tail to tail	d) tip to	midpoint	
5. In uniform circ	cular motion, the ve	locity vector is alw	ays	_ to the pat	h.
a) Horizontal	b)	Vertical	c) Tangent	d)]	Parallel
6. The vector $\frac{1}{2}\bar{A}$	is:				
a) Greater than A	in magnitude and	in opposite direction	on		
b) Less than \vec{A} in	magnitude and in o	pposite direction			
c) Greater than A	in magnitude and	in the same direction	on		
d) Less than \vec{A} in	magnitude and in the	he same direction			
7. The angle bety	ween $\vec{A} = (45 \text{ m})\hat{\imath} +$	$(52 \text{ m})\hat{j}$ and the po	ositive <i>x</i> axis is:		
a) 29°	b) 56.3°		c) 151°	d) 4	49°
8. Let $\vec{A} = (2 \text{ m})\hat{a}$	$(\hat{i} + (4 \text{ m})\hat{j} - (2 \text{ m})\hat{k}$	and $\vec{B} = (5 \text{ m})\hat{\imath} + (6 \text{ m})\hat{\imath}$	$8 \text{ m})\hat{j} + (4 \text{ m})\hat{k}.$	Then $\vec{A} + \vec{A}$	$2\vec{B}$ equals:
a) $(9 \text{ m})\hat{\imath} + (12 \text{ m})$	b) $(9 \text{ m})\hat{i} + (12 \text{ m})\hat{j} - (6 \text{ m})\hat{k}$ b) $(12 \text{ m})\hat{i} - (14 \text{ m})\hat{j} - (20 \text{ m})\hat{k}$				
c) 15		d) 11			
9. If the position	of a puck as it mov	es in an xy plane is	$\vec{r} = (4 t^2)\hat{\imath} - (4 t^2)$	(2t+6)ĵ. Aı	re the x and y
acceleration com	ponents constant?				
a) Yes		b) No			
10. If the x-comp	onent of a vector ($ec{a}$), in the xy plane	, is half as large	as the mag	gnitude of the vector,
find the tangent of	of the angle between	the vector and the	e x- axes.		
a)	b)		c)	d)	
11. A car rounds	a 46 m radius curv	e at a speed of 14 r	n/s. The magnitude	ude of its a	cceleration is:
a) 8.5 m/s^2	b)	0.34 m/s^2	c) 4.3 1	m/s^2	d) 22.3 m/s^2

12. Let $\vec{A} = (4 \text{ m})$	$(1)\hat{i} + (5m)\hat{j} - (5m)\hat{k}$ and B	$B = (2m)\hat{\imath} + (7m)\hat{\jmath} - (8 \text{ m})$	(\hat{k}) . The vector sum $\hat{S} = \hat{A} \times \hat{B}$ is:					
a) $(6 \text{ m})\hat{i} + (8 \text{ m})$	$)\hat{j} - (2 \text{ m})\hat{k} $ by	b) $(8 \text{ m})\hat{i} + (12 \text{ m})\hat{j} - (3 \text{ m})\hat{k}$						
c) $(2 \text{ m})\hat{i} - (4 \text{ m})\hat{j} + (4 \text{ m})\hat{k}$		d) $(8 \text{ m})\hat{i} + (10 \text{ m})\hat{j} + (3 \text{ m})\hat{k}$						
13. Which of the following is NOT a vector quantity?								
a) Force	b) Velocity	c) Speed	d) Acceleration					
14. At a certain i	instant, a fly ball has veloc	city $\vec{v} = (32)\hat{i} + (24)\hat{j}$ (the	e x-axes is horizontal, the y-axes is					
upward, and \vec{v} is	in meters per seconds). H	as the ball passed its high	nest point?					
a) Yes	b) No						
15. 40^0 is equal	to approximately:							
a) 3.7 rad	b) 0.7 rad	c) 1.7 rad	d) 2.7 rad					
16. A basketball	shot to the net follows a p	oath which is:						
a) Parabolic	b) Straight line	c) Hyperbolic	d) Circular					
17. A force is given as $\vec{F} = 3N\hat{\imath} + 8N\hat{\jmath} - 6N\hat{k}$. The magnitude of the force \vec{F} is:								
a) 5	b) 9.6	c) 10.4	d) 8.2					
18.								
a) Mass	b) Displacement	c) Speed	d) Temperature					
19. An object in uniform circular motion is accelerating because the velocity changes in:								
a) Magnitude	a) Magnitude b) Direction c) Both magnitude and direction							
20. The net force on a body is equal to the product of the body's mass and its acceleration, describes:								
a) Newton's first law b) New		on's second law	c) Newton's third law					
21. Two vectors	\vec{A} and \vec{B} have magnitudes	s of 12 and 8 units, respec	ctively. What is the angle between the	ne				
directions of \vec{A} and	and \vec{B} and if \vec{A} . \vec{B} equals 83	units.						
a) 0°	b) 30°	c) 180°	d) 45°					
22. If you are standing on a surface, the push back on you from the surface (due to deformation) is the:								
a) Normal force	b) Gravitational	force c) Tension	force c) Spring force					
23. The period of revolution in uniform circular motion is given by:								
a) $\frac{2\pi r}{v}$	b) $\frac{2\pi v}{r}$	c) $\frac{2\pi r}{T}$	d) $\frac{2\pi T}{v}$					
24. A motionless 600 N steel ball is suspended by a light rope from the ceiling. The tension in the rope								
is:								
a) 600 N	b) 800 N	c) 0 N	d) 200 N					
25. Acceleration and force are always in the direction:								
a) True b) False								
26. A car travels west at constant velocity. The net force on the car is:								
a) East	b) West	c) Up	d) Zero					

27. A constant force of 6 N is exerted for 2.0 s on a 12 kg object initially at rest. The change in speed of							
this object will be:							
a) 0.5 m/s	b) 1 m/s	c) 4 m/s	d) 8 m/s				
28. A 8 kg object is moving south. A net force of 10 N north on it result in the object having an							
acceleration of:							
a) 1.25 m/s ² , north	b) 1.25 m/s ² , south	c) 80 m/s ² , noi	th d) 18 m/s^2 , north				
29. A 60 kg man stands in an elevator that has a downward acceleration of 1.2 m/s ² . The force exerted							
by him on the floor is about:							
a) 1.2 N	b) 60 N	c) 516 N	d) 880 N				
30. A 20 kg crate is pushed across a frictionless horizontal floor with a force of 22 N, directed 30°							
below the horizontal. The acceleration of the crate is:							
a) 27 m/s^2 b) (0.95 m/s^2	c) 2.5 m/s^2	d) 70 m/s^2				