\qquad
ID. \qquad

Time (90 minutes)

Choose the best answer:

1. The y-component of vector (\vec{a}) can be found using the relation (where θ is the angle between the vector and the positive x-axes):
a) $a_{y}=a \cdot \sin \theta$
b) $a_{y}=a \cdot \cos \theta$
c) $a_{y}=a \cdot \tan \theta$
2. The SI unit of frictional force is:
a) Dimensionless
b) $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$
c) J
d) Kelvin
3. The vector product of two vectors \vec{C} and \vec{D} is written as:
a) $\vec{C} \times \vec{D}=C . D \cdot \sin \theta$
b) $\vec{C} \times \vec{D}=C \cdot D \cdot \cos \theta$
c) $\vec{C} \cdot \vec{D}=C \cdot D \cdot \sin \theta$
d) $\vec{C} \cdot \vec{D}=C \cdot D \cdot \cos \theta$
4. The resultant between two vectors can be found by placing the vectors:
a) tip to tip
b) tip to tail
c) tail to tail
d) tip to midpoint
5. In uniform circular motion, the velocity vector is always \qquad to the path.
a) Horizontal
b) Vertical
c) Tangent
d) Parallel
6. The vector $\frac{1}{2} \vec{A}$ is:
a) Greater than \vec{A} in magnitude and in opposite direction
b) Less than \vec{A} in magnitude and in opposite direction
c) Greater than \vec{A} in magnitude and in the same direction
d) Less than \vec{A} in magnitude and in the same direction
7. The angle between $\vec{A}=(45 \mathrm{~m}) \hat{\imath}+(52 \mathrm{~m}) \hat{\jmath}$ and the positive x axis is:
a) 29°
b) 56.3°
c) 151°
d) 49°
8. Let $\vec{A}=(2 \mathrm{~m}) \hat{\imath}+(4 \mathrm{~m}) \hat{\jmath}-(2 \mathrm{~m}) \hat{k}$ and $\vec{B}=(5 \mathrm{~m}) \hat{\imath}+(8 \mathrm{~m}) \hat{\jmath}+(4 \mathrm{~m}) \hat{k}$.Then $\vec{A}+2 \vec{B}$ equals:
a) $(9 \mathrm{~m}) \hat{\imath}+(12 \mathrm{~m}) \hat{\jmath}-(6 \mathrm{~m}) \hat{k}$
b) $(12 \mathrm{~m}) \hat{\imath}-(14 \mathrm{~m}) \hat{\jmath}-(20 \mathrm{~m}) \hat{k}$
c) 15
d) 11
9. If the position of a puck as it moves in an $x y$ plane is $\vec{r}=\left(4 t^{2}\right) \hat{\imath}-(2 \mathrm{t}+6) \hat{\jmath}$. Are the x and y acceleration components constant?
a) Yes
b) No
10. If the x -component of a vector (\vec{a}), in the xy plane, is half as large as the magnitude of the vector, find the tangent of the angle between the vector and the x - axes.
a)
b)
c)
d)
11. A car rounds a 46 m radius curve at a speed of $14 \mathrm{~m} / \mathrm{s}$. The magnitude of its acceleration is:
a) $8.5 \mathrm{~m} / \mathrm{s}^{2}$
b) $0.34 \mathrm{~m} / \mathrm{s}^{2}$
c) $4.3 \mathrm{~m} / \mathrm{s}^{2}$
d) $22.3 \mathrm{~m} / \mathrm{s}^{2}$
12. Let $\vec{A}=(4 \mathrm{~m}) \hat{\imath}+(5 \mathrm{~m}) \hat{\jmath}-(5 \mathrm{~m}) \hat{k}$ and $\vec{B}=(2 \mathrm{~m}) \hat{\imath}+(7 \mathrm{~m}) \hat{\jmath}-(8 \mathrm{~m}) \hat{k}$. The vector sum $\vec{S}=\vec{A} \times \vec{B}$ is:
a) $(6 \mathrm{~m}) \hat{\imath}+(8 \mathrm{~m}) \hat{\jmath}-(2 \mathrm{~m}) \hat{k}$
b) $(8 \mathrm{~m}) \hat{\imath}+(12 \mathrm{~m}) \hat{\jmath}-(3 \mathrm{~m}) \hat{k}$
c) $(2 \mathrm{~m}) \hat{\imath}-(4 \mathrm{~m}) \hat{\jmath}+(4 \mathrm{~m}) \hat{k}$
d) $(8 \mathrm{~m}) \hat{\imath}+(10 \mathrm{~m}) \hat{\jmath}+(3 \mathrm{~m}) \hat{k}$
13. Which of the following is NOT a vector quantity?
a) Force
b) Velocity
c) Speed
d) Acceleration
14. At a certain instant, a fly ball has velocity $\vec{v}=(32) \hat{\imath}+(24) \hat{\jmath}$ (the x-axes is horizontal, the y-axes is upward, and \vec{v} is in meters per seconds). Has the ball passed its highest point?
a) Yes
b) No
15. 40^{0} is equal to approximately:
a) 3.7 rad
b) 0.7 rad
c) 1.7 rad
d) 2.7 rad
16. A basketball shot to the net follows a path which is:
a) Parabolic
b) Straight line
c) Hyperbolic
d) Circular
17. A force is given as $\vec{F}=3 N \hat{\imath}+8 N \hat{\jmath}-6 N \hat{k}$. The magnitude of the force \vec{F} is:
a) 5
b) 9.6
c) 10.4
d) 8.2
18.

a) Mass
b) Displacement
c) Speed
d) Temperature
19. An object in uniform circular motion is accelerating because the velocity changes in:
a) Magnitude
b) Direction
c) Both magnitude and direction
20. The net force on a body is equal to the product of the body's mass and its acceleration, describes:
a) Newton's first law
b) Newton's second law
c) Newton's third law
21. Two vectors \vec{A} and \vec{B} have magnitudes of 12 and 8 units, respectively. What is the angle between the directions of \vec{A} and \vec{B} and if $\vec{A} \cdot \vec{B}$ equals 83 units.
a) 0°
b) 30°
c) 180°
d) 45°
22. If you are standing on a surface, the push back on you from the surface (due to deformation) is the:
a) Normal force
b) Gravitational force
c) Tension force
c) Spring force
23. The period of revolution in uniform circular motion is given by:
a) $\frac{2 \pi r}{v}$
b) $\frac{2 \pi v}{r}$
c) $\frac{2 \pi r}{T}$
d) $\frac{2 \pi T}{v}$
24. A motionless 600 N steel ball is suspended by a light rope from the ceiling. The tension in the rope is:
a) 600 N
b) 800 N
c) 0 N
d) 200 N
25. Acceleration and force are always in the direction:
a) True
b) False
26. A car travels west at constant velocity. The net force on the car is:
a) East
b) West
c) Up
d) Zero
27. A constant force of 6 N is exerted for 2.0 s on a 12 kg object initially at rest. The change in speed of this object will be:
a) $0.5 \mathrm{~m} / \mathrm{s}$
b) $1 \mathrm{~m} / \mathrm{s}$
c) $4 \mathrm{~m} / \mathrm{s}$
d) $8 \mathrm{~m} / \mathrm{s}$
28. A 8 kg object is moving south. A net force of 10 N north on it result in the object having an acceleration of:
a) $1.25 \mathrm{~m} / \mathrm{s}^{2}$, north
b) $1.25 \mathrm{~m} / \mathrm{s}^{2}$, south
c) $80 \mathrm{~m} / \mathrm{s}^{2}$, north
d) $18 \mathrm{~m} / \mathrm{s}^{2}$, north
29. A 60 kg man stands in an elevator that has a downward acceleration of $1.2 \mathrm{~m} / \mathrm{s}^{2}$. The force exerted by him on the floor is about:
a) 1.2 N
b) 60 N
c) 516 N
d) 880 N
30. A 20 kg crate is pushed across a frictionless horizontal floor with a force of 22 N , directed 30° below the horizontal. The acceleration of the crate is:
a) $27 \mathrm{~m} / \mathrm{s}^{2}$
b) $0.95 \mathrm{~m} / \mathrm{s}^{2}$
c) $2.5 \mathrm{~m} / \mathrm{s}^{2}$
d) $70 \mathrm{~m} / \mathrm{s}^{2}$

